Questions

Q1.

Figure 1
Two blocks, A and B, of masses $2 m$ and $3 m$ respectively, are attached to the ends of a light string.

Initially A is held at rest on a fixed rough plane.
The plane is inclined at angle α to the horizontal ground, where $\tan \alpha=\frac{5}{12}$
The string passes over a small smooth pulley, P, fixed at the top of the plane.
The part of the string from A to P is parallel to a line of greatest slope of the plane.
Block B hangs freely below P, as shown in Figure 1.
The coefficient of friction between A and the plane is $\frac{2}{3}$
The blocks are released from rest with the string taut and A moves up the plane.
The tension in the string immediately after the blocks are released is T.
The blocks are modelled as particles and the string is modelled as being inextensible.
(a) Show that $T=\frac{12 m g}{5}$

After B reaches the ground, A continues to move up the plane until it comes to rest before reaching P.
(b) Determine whether A will remain at rest, carefully justifying your answer.
(c) Suggest two refinements to the model that would make it more realistic.

Q2.

Unless otherwise indicated, whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

A rough plane is inclined to the horizontal at an angle α, where $\tan \alpha=\frac{3}{4}$.
A particle of mass m is placed on the plane and then projected up a line of greatest slope of the plane.

The coefficient of friction between the particle and the plane is μ.
The particle moves up the plane with a constant deceleration of $\frac{4}{5} \mathrm{~g}$.
(a) Find the value of μ.

The particle comes to rest at the point A on the plane.
(b) Determine whether the particle will remain at A, carefully justifying your answer.

Q3.

Unless otherwise stated, whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Figure 1
A wooden crate of mass 20 kg is pulled in a straight line along a rough horizontal floor using a handle attached to the crate.

The handle is inclined at an angle α to the floor, as shown in Figure 1, where $\tan \alpha=\frac{3}{4}^{\tan }$
The tension in the handle is 40 N .
The coefficient of friction between the crate and the floor is 0.14
The crate is modelled as a particle and the handle is modelled as a light rod.
Using the model,
(a) find the acceleration of the crate.

The crate is now pushed along the same floor using the handle. The handle is again inclined at the same angle α to the floor, and the thrust in the handle is 40 N as shown in Figure 2 below.

Figure 2
(b) Explain briefly why the acceleration of the crate would now be less than the acceleration of the crate found in part (a).

Q4.

A rough plane is inclined to the horizontal at an angle α, where $\tan \alpha=\frac{3}{4}$
A brick P of mass m is placed on the plane.
The coefficient of friction between P and the plane is μ
Brick P is in equilibrium and on the point of sliding down the plane.
Brick P is modelled as a particle.
Using the model,
(a) find, in terms of m and g, the magnitude of the normal reaction of the plane on brick P
(b) show that $\mu=\frac{3}{4}$

For parts (c) and (d), you are not required to do any further calculations.
Brick P is now removed from the plane and a much heavier brick Q is placed on the plane.
The coefficient of friction between Q and the plane is also $\frac{3}{4}$
(c) Explain briefly why brick Q will remain at rest on the plane.

Brick Q is now projected with speed $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ down a line of greatest slope of the plane.
Brick Q is modelled as a particle.
Using the model,
(d) describe the motion of brick Q, giving a reason for your answer.

Mark Scheme

Q1.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)			
	$R=2 m g \cos \alpha=\frac{24 m g}{13}$	B1	This mark is given for using the model to state the normal reaction between A and the plane
	$F_{\text {max }}=\frac{2}{3} R=\frac{16 \mathrm{mg}}{13}$	B1	This mark is given for the use of $F=\mu R$
	Equation of motion for A is$T-F_{\max }-2 m g \sin \alpha=2 m a$	M1	This mark is given for a method form an equation of motion for A
		A1	This mark is given for a correct equation of motion for A
	Equation of motion for B is$3 m g-T=3 m a$	M1	This mark is given for a method to form an equation of motion for B
		A1	This mark is given for a correct equation of motion for B
	$3 m g-\frac{16 m g}{13}-\frac{10 m g}{13}=5 m a$	M1	This mark is given for a method using the equations of motion for A and B to solve for T
	$T=3 m g-\frac{3 m g}{5}=\frac{12 m g}{5}$	A1	This mark is given for a full method and correct working to show the answer given
(b)	$F_{\max }=\frac{16 m g}{13}>\frac{10 m g}{13}$ $\frac{10 \mathrm{mg}}{13}$ is the component of the weight parallel to the slope	M1	This mark is given for a comparison of $F_{\max }$ with the component of weight
	Thus A will not move	A1	This mark is given for a fully justified and correct conclusion
(c)	Have the model consider air resistance	B1	This mark is given for one correct refinement stated
	Have the model use an extensible string	B1	This mark is given for one correct refinement stated

Q2.

Question	Scheme	Marks	AOs
(a)	$R=m g \cos \alpha$	B1	3.1b
	Resolve parallel to the plane	M1	3.16
	$-F-m g \sin \alpha=-0.8 m g$	A1	1.1b
	$F=\mu R$	M1	1.2
	Produce an equation in μ only and solve for μ	M1	2.2a
	$\mu=\frac{1}{4}$	A1	1.1b
		(6)	
(b)	Compare $\mu m g \cos \alpha$ with $m g \sin \alpha$	M1	3.16
	Deduce an appropriate conclusion	A1 ft	2.2a
		(2)	
(8 marks)			
Notes:			
(a) B1: \quad for $R=m g \cos \alpha$ $1^{\text {st }}$ M1: for resolving parallel to the plane $\mathbf{1}^{\text {st }} \mathrm{A} 1$: for a correct equation $2^{\text {nd }}$ M1: for use of $F=\mu R$ $3^{\text {rd }}$ M1: for eliminating F and R to give a value for μ $2^{\text {nd }} \mathrm{A} 1$: for $\mu=\frac{1}{4}$			
(b) M1: comparing size of limiting friction with weight component down the plane A1ft: for an appropriate conclusion from their values			

Q3.

Question	Scheme	Marks	AOs
(a)	Resolve vertically	M1	3.1b
	$R+40 \sin \alpha=20 g$	A1	1.1b
	Resolve horizontally	M1	3.1b
	$40 \cos \alpha-F=20 a$	A1	1.1b
	$F=0.14 R$	B1	1.2
	$a=0.396$ or $0.40\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	2.2a
		(6)	
(b)	Pushing will increase R which will increase available F	B1	2.4
	Increasing F will decrease a * GIVEN ANSWER	B1*	2.4
		(2)	
(8 marks)			
Notes:			
(a) MI: Resolve vertically with usual rules applying Al: Correct equation. Neither g nor $\sin \alpha$ need to be substitut M1: Apply $F=m a$ horizontally, with usual rules Al: Neither F nor $\cos \alpha$ need to be substituted B1: $F=0.14 R$ seen (e.g. on a diagram) Al: Either answer			
(b) B1: Pushing increases R which produces an increase in available (limiting) friction B1: F increase produces an a decrease (need to see this) N.B. It is possible to score B0 B1 but for the B1, some "explanation" is needed to say why friction is increased e.g. by pushing into the ground.			

Q4.

Question	Scheme	Marks	AOs
(a)	Resolve perpendicular to the plane	M1	3.4
	$R=m g \cos \alpha=\frac{4}{5} m g$	A1	1.1b
		(2)	
(b)	Resolve parallel to the plane or horizontally or vertically	M1	3.4
	$F=m g \sin \alpha$ or $R \sin \alpha=F \cos \alpha$	A1	1.1b
	Use $F=\mu R$ and solve for μ	M1	2.1
	$\mu=\frac{3}{4}$ *	A1*	2.2a
		(4)	
(c)	The forces acting on Q will still balance as the m 's cancel oe Other possibilities: e.g. the friction will increase in the same proportion as the weight component or force down the plane. The force pulling the brick down the plane increases by the same amount as the friction oe This mark can be scored if they do the calculation.	B1	2.4
		(1)	
(d)	Brick Q slides down the plane with constant speed.	B1	2.4
	No resultant force down the plane (so no acceleration) oe	B1	2.4
	These marks can be scored if they do the calculation.	(2)	
(9 marks)			

Notes:		
a	M1	Correct no. of terms, condone sin/cos confusion
	A1	cao with no wrong working seen. $\quad m g \cos 36.86$ is A0
b	M1	Correct no. of terms, condone sin/cos confusion
	A1	Correct equation
	M1	Must use $F=\mu R$ (not merely state it) to obtain a numerical value for μ. This is an independent M mark.
	A1*	Given answer correctly obtained
c	B1	Must have the 3 underlined phrases/word oe
d	B1	Must say constant speed.
	B1	Any appropriate equivalent statement

